Nature's Power

Increasing America's Use of Renewable and Alternative Energy

sound national energy policy should encourage a clean and diverse portfolio of domestic energy supplies. Such diversity helps to ensure that future generations of Americans will have access to the energy they need.

Renewable energy can help provide for our future needs by harnessing abundant, naturally occurring sources of energy, such as the sun, the wind, geothermal heat, and biomass. Effectively harnessing these renewable resources requires careful planning and advanced technology. Through improved technology, we can ensure that America will lead the world in the development of clean, natural, renewable and alternative energy supplies.

Renewable and alternative energy supplies not only help diversify our energy portfolio; they do so with few adverse envi-

ronmental impacts. While the current contribution of renewable and alternative energy resources to America's total electricity supply is relatively small—only 9 percent the renewable and alternative energy sectors are among the fastest growing in the United States. Non-hydropower only account for 2 percent of our electricity needs. However, electricity generation from nonhydropower renewable energy grew by nearly 30 percent in the 1990s. Continued growth of renewable energy will continue to be important in delivering larger supplies of clean, domestic power for America's growing economy.

Renewable energy resources tap naturally occurring flows of energy to produce electricity, fuel, heat, or a combination of these energy types. One type of renewable energy, hydropower, has long provided a significant contribution to the U.S. energy supply and today is competitive with other forms of conventional electricity. However, there is limited growth potential for hydropower. Non-hydropower renewable energy is generated from four sources: biomass, geothermal, wind, and solar (Figure 6-1). The United States has significant potential for renewable resource development. These nondepletable sources of energy are domestically abundant and often have less impact on the environment than conventional sources. They can provide a reliable source of energy at a stable price, and they can also generate income for farmers, landowners, and others who harness them.

Renewable hydropower has long provided a significant contribution to the U.S. energy supply. Today, hydropower is competitive with other forms of conventionally generated electricity.

Figure 6-1 U.S. Resource Potential for Renewable Energy

Almost every state has the potential for wind energy and for biomass and biofuel production. The Southwest has the greatest potential for solar energy, and geothermal energy resources are most abundant in the West.

Source: U.S. Department of Energy, National Renewable Energy Laboratory.

Recommendation:

★ The NEPD Group recommends that the President direct the Secretaries of the Interior and Energy to reevaluate access limitations to federal lands in order to increase renewable energy production, such as biomass, wind, geothermal, and solar.

Alternative energy includes: alternative fuels that are transportation fuels other than gasoline and diesel, even when the type of energy, such as natural gas, is traditional; the use of traditional energy sources, such as natural gas, in untraditional ways, such as for distributed energy at the point of use through microturbines or fuel cells; and future energy sources, such as hydrogen and fusion.

Both renewable and alternative energy resources can be produced centrally or on a distributed basis near their point of use. Providing electricity, light, heat, or mechanical energy at the point of use diminishes the need for some transmission lines and pipelines, reducing associated energy delivery losses and increasing energy efficiency. Distributed energy resources may be renewable resources, such as biomass cogeneration in the lumber and paper industry or rooftop solar photovoltaic systems on homes, or they may be alternative uses of traditional energy, such as natural gas microturbines.

Recommendations:

★ The NEPD Group supports the increase of \$39.2 million in the FY 2002 budget amendment for the Department of Energy's Energy Supply account that would provide increased support for research and development of renewable energy resources.

★ The NEPD Group recommends that the President direct the Secretary of Energy to conduct a review of current funding and historic performance of renewable energy and alternative energy research and development programs in light of the recommendations of this report. Based on this review, the Secretary of Energy is then directed to propose appropriate funding of those research and development programs that are performance-based and are modeled as public-private partnerships.

Renewable Energy Technologies Biomass

Biomass is organic matter that can be used to provide heat, make fuel, and generate electricity. Wood, the largest source of biomass, has been used to provide heat for thousands of years. Many other types of biomass are also used as an energy source, such as plants, residue from agriculture or forestry, and the organic component of municipal and industrial wastes. Landfill gas is also considered a biomass source. Biomass resources can be replenished through culti-

Microturbines

Microturbines are small combustion turbines approximately the size of a refrigerator with outputs of 25 to 500 kilowatts. Microturbines can be used to power a home or small business. This technology has evolved largely from automotive and truck turbochargers, auxiliary power units for airplanes, and small jet engines.

Compared to other technologies for small-scale power generation, microturbines offer a number of significant advantages, including a small number of moving parts; compact size; lightweight, optimal efficiency; lower emissions and electricity costs; and opportunities to use waste fuels. For these reasons, microturbines could easily capture a significant share of the distributed generation market.

vation of what are known as energy crops, such as fast-growing trees and grasses.

Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called biofuels, to meet our transportation needs. The two most common biofuels are ethanol and biodiesel. Ethanol is made by fermenting any biomass that is rich in carbohydrates, such as corn. It is mostly used as a fuel additive to reduce a vehicle's emissions. Biodiesel is made using vegetable oils, animal fats, algae, or even recycled cooking greases. It can be used as a diesel additive to reduce emissions or in its pure form to fuel a vehicle. Beyond energy benefits, development of biomass benefits rural economies that produce crops used for biomass, particularly ethanol and biomass electricity generation.

Biomass, like corn, that is rich in carbohydrates can be converted directly into biofuels to meet our transportation needs. The biofuel ethanol is mostly used as a fuel additive to reduce vehicles' smog-causing emissions. In June 1992, the Greater Peoria Mass Transit District began operating fourteen ethanol-powered buses along regular city routes. U.S. DEPARTMENT OF ENERGY

Chapter 6 • Nature's Power: Increasing America's Use of Renewable and Alternative Energy 6-4

Biomass is also used to generate electricity. This is accomplished through the direct combustion of wood, municipal solid waste, and other organic materials; co-firing with coal in high efficiency boilers; or combustion of biomass that has been chemically converted into fuel oil. In the lumber and paper industries, wood scraps are sometimes directly fed into boilers to produce steam for their manufacturing processes or to heat their buildings. For that reason, renewable energy offers a particular advantage to the lumber and paper industry, and many analysts project the industry may soon become a net seller of electricity. Co-firing coal power plants with biomass has environmental benefits, since cofiring can significantly reduce emissions. Biomass accounts for 76 percent of renewable electricity generation and 1.6 percent of total U.S. electricity supply.

Even gas for generating electricity can be produced from biomass. Gasification systems use high temperatures to convert biomass into a gas that is used to fuel a turbine. The decay of biomass in landfills also produces methane, a gas that can be captured and burned in a boiler to produce steam for electricity generation or for industrial processes. Using methane emissions increases electricity supplies, reduces pollution from landfills and reduces greenhouse gas emissions. The technologies to collect and use landfill methane to generate electricity are already in the market. How-

ever, they have not been successfully integrated at present due to the perceived higher risk of new technologies.

Recommendation:

★ The NEPD Group recommends that the President direct the Secretary of the Treasury, to work with Congress on legislation to expand the section 29 tax credit to make it available for new landfill methane projects. The credit could be tiered, depending on whether a landfill is already required by federal law to collect and flare its methane emissions due to local air pollution concerns.

Geothermal

Geothermal energy is the use of steam and hot water generated by heat from the Earth to perform work. Some geothermal power plants use steam or hot water from a natural underground reservoir to power a generator. Others use hot water to provide direct heat for residential and other buildings, and for other applications.

The most readily accessible resources for geothermal power generation in the United States are located in the West, Alaska, and Hawaii. A wide array of hightechnology geological, geochemical, and geophysical techniques are used to locate geothermal resources. In large measure, the technology for developing these resources has been adapted from the oil industry. Improvements in drill bits, drilling techniques, advanced instruments, and other technological advances have made energy production from geothermal resources increasingly efficient.

Geothermal accounts for 17 percent of renewable electricity generation and 0.3 percent of total U.S. electricity supply. However, the net installed capacity of U.S. geothermal power plants has increased significantly, from 500 MW in 1973 to 2,800 MW today.

Hot water near the surface of the Earth can also be used directly for heat. These direct-use applications include heat-

The Geysers in northern California is the world's largest producer of renewable geothermal power. The drysteam field has successfully produced power since the early 1960s, when Pacific Gas & Electric installed the first 11-megawatt plant. Today, nearly 2,000 megawatts are on line – enough energy to supply the electricity needs of San Francisco and Oakland. PACIFIC GAS & ELECTRIC ing buildings, growing plants in greenhouses, drying crops, heating water at fish farms, and several industrial processes, such as pasteurizing milk.

In addition, individual homeowners, farmers, and businesses can tap into geothermal energy through geothermal heat pumps to heat and cool buildings. A geothermal heat pump system consists of a heat pump, an air delivery system, a heat exchanger, and a system of pipes buried in the shallow ground near the building. In the winter, a heat pump removes heat from the heat exchanger and pumps that heat into the indoor air delivery system. In the summer, the process is reversed, and the heat pump moves heat from the indoor air into the heat exchanger. The heat removed from the indoor air during the summer can also be used to provide a free source of hot water. Geothermal heat pumps can be used almost anywhere in the United States, and can significantly increase system efficiencies.

Recommendation:

★ The NEPD Group recommends that the President direct the Secretary of the Interior to determine ways to reduce the delays in geothermal lease processing as part of the permitting review process.

Wind Energy

Wind energy has been used since at least 200 B.C. for grinding grain and pumping water. By 1900, windmills were used on farms and ranches in the United States to pump water and, eventually, to produce electricity. Windmills developed into modern-day wind turbines.

Wind turbines are used for several applications. Wind power uses the naturally occurring energy of the wind for practical purposes like generating electricity, charging batteries, or pumping water. Large, modern wind turbines operate together in wind farms to produce electricity for utilities. Small turbines are used by homeowners, farmers, and remote villages to help meet localized energy needs.

Wind turbines capture energy by using propeller-like blades that are mounted on a

rotor. These blades are placed on top of high towers, in order to take advantage of the stronger winds at 100 feet or more above the ground. The wind causes the propellers to turn, which then turn the attached shaft to generate electricity. Wind can be used as a stand-alone source of energy or in conjunction with other renewable energy systems. Wind and natural gas hybrid systems are a promising approach that offers clean power to consumers.

Wind energy accounts for 6 percent of renewable electricity generation and 0.1 percent of total electricity supply. However, advances by research labs, universities, utilities, and wind energy developers have helped cut wind energy's costs by more than 80 percent during the last twenty years. The industry is poised for growth. In some parts of the country, electricity from wind power can be produced at prices that are comparable to other conventional energy technologies. The United States has many areas with abundant wind energy potential, namely in the West, the Great Plains and New England.

Solar

Sunlight, or solar energy, can be used to generate electricity; heat water; and heat, cool, and light buildings. Photovoltaic (solar cell) systems use semiconductor materials similar to those used in computer chips to capture the energy in sunlight and to convert it directly into electricity. Photovoltaic cells have been used in everything from In 1996, the National Association of Home Builders constructed advanced townhouses featuring standing-seam roofs and other energy efficient materials and systems. The townhouse on the right differs from the others in that it has an integrated photovoltaic standing-seam roof that also produces electricity. TIM ELLISON, ENERGY CONVERSION DEVICES the solar cells in calculators to the space station Freedom.

Another technology for harnessing the sun's energy is a concentrating solar power system, which uses the sun's heat to generate electricity. The sunlight is collected and focused with mirrors to create a high intensity heat source that in turn can be used to generate electricity through a steam turbine or a heat engine.

Solar hot water systems use the sun to heat water for domestic or industrial use. Many large commercial buildings also use solar collectors for heat. A solar ventilation system can be used in cold climates to preheat air as it enters a building. The heat from a solar collector can even be used to provide energy for cooling a building.

Some architects are using careful design and new optical materials to use sunlight to reduce the need for traditional lighting and to cut down on heating and cooling costs. For example, materials that absorb and store the sun's heat can be built into the sunlit floors and walls. The floors and walls will store heat during the day and slowly release heat at night.

While solar energy technologies have undergone technological and cost improvements and are well established in highvalue markets like remote power, satellites, communications, and navigational aids, continued research is needed to reduce costs and improve performance. Solar energy accounts for 1 percent of renewable electricity generation and 0.02 percent of total U.S. electricity supply.

Alternative Energy

Alternative Transportation Fuels

Alternative fuels are any transportation fuels made from a nontraditional source, including ethanol, biodiesel, and other biofuels. These can be made from biomass resources, including liquid fuels (e.g., ethanol, methanol, biodiesel) and gaseous fuels (e.g., hydrogen and methane). Biofuels are primarily used to fuel vehicles, but can also fuel engines or fuel cells for electricity generation. Alternative fuels also

Recommendations:

★ The NEPD Group recommends that the President direct the Administrator of the Environmental Protection Agency to develop a new renewable energy partnership program to help companies more easily buy renewable energy, as well as receive recognition for the environmental benefits of their purchase, and help consumers by promoting consumer choice programs that increase their knowledge about the environmental benefits of purchasing renewable energy.

★ The NEPD Group recommends that the President direct the Secretary of the Treasury to work with Congress on legislation to extend and expand tax credits for electricity produced using renewable technology, such as wind and biomass. The President's budget request extends the present 1.7 cents per kilowatt hour tax credit for electricity produced from wind and biomass; expands eligible biomass sources to include forest-related sources, agricultural sources, and certain urban sources; and allows a credit for electricity produced from biomass co-fired with coal.

★ The NEPD Group recommends that the President direct the Secretary of the Treasury to work with Congress on legislation to provide a new 15 percent tax credit for residential solar energy property, up to a maximum credit of \$2,000.

★ The NEPD Group recommends that the President direct the Secretaries of the Interior and Energy to work with Congress on legislation to use an estimated \$1.2 billion of bid bonuses from the environmentally responsible leasing of ANWR for funding research into alternative and renewable energy resources, including wind, solar, geothermal, and biomass.

Alternative Fuel Vehicles

Alternative fuel vehicles (AFVs) can run on methanol, ethanol, compressed natural gas, liquefied natural gas, propane, hydrogen, electricity, biodiesel, and natural gas. Today, more than 450,000 alternative vehicles are operating in the United States. Some of the barriers to using AFVs include:

- *Cost*—For example, a Ford Crown Victoria that runs on compressed natural gas costs about \$4,000 more than its gasoline counterpart.
- *Refueling Infrastructure*—Refueling infrastructure is limited, which can make refueling inconvenient and travel options difficult.
- *Travel Distance*—Ability to travel a long distance on a single volume of fuel. Al ternative fuels have an energy content lower than that of gasoline, which means that AFVs cannot travel as far as traditional vehicles on a single tank of fuel.

In the short term, natural gas and propane offer the greatest potential for market growth, especially in niche markets where lower fuel costs make them attractive, such as transit buses, school buses, shuttles, and other heavy-duty vehicles. Ethanol vehicles offer tremendous potential if ethanol production can be expanded. Electric vehicles could reach large numbers in the future if technology breakthroughs help bring costs down and increase driving distance. Fuel cell vehicles operating on compressed hydrogen offer long-term potential. Compressed natural gas offers a distribution stepping-stone to a hydrogen-refueling infrastructure.

include traditional energy sources, such as natural gas and liquid propane that are traditionally not used as a transportation fuel.

Currently, there are approximately 450.000 alternative fuel vehicles in the United States, and more than 1.5 million flexible-fuel vehicles that can use gasoline or a mixture of ethanol and gasoline. Ethanol is made by converting the carbohydrate portion of biomass into sugar, which is then converted into ethanol through a fermentation process. Ethanol is the most widely used biofuel, and its production has increased sharply since 1980, rising from 200 million gallons a year to 1.9 billion gallons. Today, many states are considering phasing out the use of MTBE (methyl tertiary butyl ether), an oxygenate additive for gasoline. If they do so, that will likely spur greater reliance on ethanol.

Each year, approximately 65 percent of the oil consumed in the United States is used for transportation. As a result, vehicle emissions have become the leading source of U.S. air pollution. However, recent advances in fuels and vehicle design are helping increase fuel efficiency and reduce toxic substances discharged into the air.

Changes in the composition of trans-

portation fuels, such as gasoline and diesel fuels, are one way to improve vehicle performance while reducing emissions and lowering oil consumption. Reformulated gasoline contains fuel additives such as ethanol to increase oxygen content, which reduces harmful emissions such as carbon monoxide. Low-sulfur gasoline reduces sulfur oxide emissions. New diesel fuels, some of which have lower sulfur contents or are produced from clean-burning natural gas, can help vehicles with diesel engines achieve lower emissions.

In addition to advanced transportation fuels, alternative fuels are being developed, such as biodiesel, electricity, ethanol, hydrogen, methanol, natural gas, and propane. These alternative fuels not only reduce dependence on petroleum transportation fuels. They reduce or entirely eliminate harmful emissions as well. With the exception of natural gas and propane, these fuels also have the potential of being generated from renewable resources, such as ethanol from corn. The federal government has promoted development of alternative fuels for many years and this program has helped to reduce U.S. reliance on oil-based fuels.

The evolution toward more efficient,

environmentally friendly transportation fuels has been mirrored by improvements in vehicle design, components, and materials. Alternative fuel vehicles, which can either switch between two fuels or run on a mixture of two fuels such as gasoline and ethanol, are now available. Recent developments in both alternative fuel vehicles and petroleum-based vehicles. such as advances in engines, drive trains, and emission-control technologies, may double or triple the efficiency of current vehicles. Some of these new technologies include hybrid electric vehicles, which combine an engine with an electric motor, and fuel cells, which produce electricity by converting a fuel, generally hydrogen and oxygen, into water.

A number of issues drive the research and marketability of advanced alternative fuel vehicles and petroleum-based vehicles in the United States. The goal of reducing U.S. dependence on imported oil, combined with the link between vehicle emissions and air pollution, have prompted the development of emissions and fuel economy standards for car manufacturers. In addition, federal, state, and local governments have enacted regulations, laws, and incentives designed to reduce the number of vehicle miles traveled and to encourage businesses and individuals to purchase alternative fuel vehicles.

The success of the federal alternative fuels program has been limited, however. The current program focuses on mandating certain fleet operators to purchase alternative fueled vehicles. The hope was that this vehicle purchase mandate would lead to expanded use of alternative fuels. That expectation has not been realized, since most fleet operators purchase dual-fueled vehicles that operate on petroleum motor fuels. The Clean Air Act required the use of oxygenates, such as MTBE (methyl tertiary butyl ether) and ethanol in fuel. These oxygenates account for 92 percent of alternative fuel use. Reforms to the federal alternative fuels program could promote alternative fuels use instead of mandating purchase of vehicles that ultimately run on petroleum fuels.

Recommendation:

★ The NEPD Group recommends that the President direct the Secretary of Treasury to work with Congress to continue the ethanol excise tax exemption.

Distributed Energy

Untapped opportunities for reducing energy demand loads could be realized by better integrating electricity supply systems and customers. Improved integration can produce a variety of benefits for tight energy markets, including reducing peak demand loads, bypassing congested areas of transmission by placing new generating capacity closer to the consumer, and thus achieving greater overall system efficiencies.

Current electricity load management efforts are typically limited to cutting off interruptible or nonfirm customers, appeals to the public to conserve, and brownouts. Some utilities are incorporating currentgeneration metering, sensor, and control technologies to take the next step: selective reduction of individual energy-using appliances. In some areas, residents can reduce their monthly bills by allowing the utility to electronically turn off selected appliances, such as water heaters, on a rotating basis. If this option is well managed, consumers are unaware of the temporary loss service, and critical systems continue to run unimpeded. Advanced integrated supply-and-demand load management controls also allow for widespread "demand auctions," in which consumers can decide which energy services to forego on which days.

Distributed energy resources describe a variety of smaller electricity-generating options well suited for placement in homes, offices, and factories, or near these facilities. Distributed energy systems have the distinct advantage of being brought on line faster than new central power plants. While natural gas microturbines and solar roof panels are the most familiar types of distributed energy, other distributed energy resources include: combined heat and power, stationary fuel cells, generation of bioenergy from landfill methane recovery, and small wind systems. Photovoltaic solar distributed energy is a particularly valuable energy generation source during times of peak use of power.

Efficiency gains from distributed energy come from three sources. First, transmission and distribution line losses (about 5 percent) are reduced because the energy is generally used near the source. Second, the co-location with consumption makes it more feasible to use waste heat, displacing otherwise needed natural gas or electricity for heating purposes. And, third, the co-location with consumption allows for the integration of on-site energy efficiency and generating capabilities. For example, in the residential market, distributed energy applications can make possible the concept of the "net zero energy home," in which the overall level of energy produced at the home equals or exceeds the amount of energy used in the home.

Despite these advantages, a number of impediments and competing policy objectives discourage the wider application of integrated electricity supply and demand solutions, many of which reflect the relative newness and lack of familiarity with these technologies.

For example, the lack of standards governing interconnection of distributed energy to the grid impedes development. The lack of standards prevents a uniformly effective means of getting excess distributed energy to the grid.

In addition, current air quality regulations do not take into account the additional energy savings from many distributed energy technologies. Likewise, distributed energy systems purchased by consumers may receive different tax rates than those purchased by traditional electricity producers.

Although distributed energy can alleviate distribution constraints, these systems often cannot be sited and permitted in a timely manner. For instance, land-use zoning codes may not allow generating equipment in association with residential or commercial land uses, and building code officials may not know enough about solar roof systems to provide timely building permits. As with energy efficiency equipment, load management integrating systems, both controls and distributed energy, have higher first costs associated with lower future energy bills.

Another barrier to development of distributed energy is the need for net metering, which enables consumers to install a small electricity project at their homes and sell the excess to the local utility, offsetting their purchases from the utility at other times. Net metering can lower the cost to consumers of distributed energy projects. Some consumers are reluctant to install distributed renewable energy resources because many regions do not have the regulatory framework under which consumers can sell energy back to the grid under a net metering system.

Future Energy Sources

As we look to the long-term future of alternative energy technologies, there is significant promise in these technologies to meet an ever-growing portion of our nation's energy needs.

Hydrogen

In the long run, alternative energy technologies such as hydrogen show great promise. Hydrogen is the most common element in the universe and can be made from water. Converting hydrogen into energy is compatible with existing energy technologies, such as fuel cells, engines, and combustion turbines. The energy for extracting hydrogen could come from existing, traditional fuels, or it could be derived from renewable energy sources, such as solar, nuclear, and fossil, to achieve the cleanest possible energy cycle. Hydrogen can be converted into useful energy forms efficiently and without detrimental environmental effects. Unlike other energy sources, its production by-product is water.

In the future, hydrogen may be able to be used in furnaces and as a transportation fuel for automobiles, buses, trains, ships and airplanes. Hydrogen could also be converted directly into electricity by fuel cells. Combustion of hydrogen with oxygen results in pure steam, which has many appli-

There is a significant promise in renewable technologies to meet an evergrowing portion of our nation's energy needs. Wind power has significant growth potential. The principal challenges to achieving this level of renewable energy generation are cost and market acceptance of renewable power technologies. U.S. DEPARTMENT OF ENERGY, NATIONAL RENEWABLE ENERGY LABORATORY cations in industrial processes and space heating. Moreover, hydrogen is an important industrial gas and raw material in numerous industries, such as computer, metallurgical, chemical, pharmaceutical, fertilizer and food industries.

An energy infrastructure that relies on hydrogen could enable much greater use of distributed energy systems. These systems are small, modular electricity generators that can be placed right where they are needed for heating, cooling, and powering offices, factories, and residences. Hydrogen fuel cells are a promising type of distributed energy system that can provide the exacting reliability needed for the high-tech industry.

Fuel cells can produce electricity and heat from hydrogen, natural gas, and petroleum fuels, and fuel gases derived from coal and biomass. What makes fuel cells unique is that they can use fuels without combustion, simply by chemical reactions, making them extremely clean and efficient.

Fuel cells were developed by the National Aeronautics and Space Administration to generate electricity, heat, and water in space vehicles. The first-generation fuel cells for stationary power applications entered the commercial market in 1995. This type of fuel cell is used to generate very high-quality electricity and heat with negligible emissions in commercial and industrial settings. It is most likely to be used in cases where users are willing to pay a premium for cleaner, more reliable power than is available from the commercial grid.

The second generation of stationary fuel cells is currently in the demonstration phase, including a combined fuel cell-turbine hybrid. These fuel cells are expected to be more efficient and cost less when used in similar distributed energy systems. Smaller fuel cells for residential units are also being developed, and some are in the demonstration phase.

Despite technical progress, high costs remain the main deterrent to widespread fuel cell use. Significant cost reductions must be achieved before fuel cells will be competitive with internal combustion engines, and the size and weight of fuel cell systems must be reduced even more to accommodate vehicle packaging requirements.

The primary challenge to using more hydrogen in our energy systems is the cost of producing, storing, and transporting it. A serious challenge confronting a move toward distributed energy is the transition away from centralized energy systems of supply and production. These challenges are not expected to be resolved overnight, but progress made in the last few years has already far surpassed the expectations of just a decade ago.

A significant amount of promising research and development has already been completed. The automobile industry is aggressively exploring the fuel cell as the future of the industry. Moreover, a new firstgeneration class of distributed energy technologies are already hitting the market.

Fusion

Fusion—the energy source of the sun—has the long-range potential to serve as an abundant and clean source of energy. The basic fuels, deuterium (a heavy form of hydrogen) and lithium, are abundantly available to all nations for thousands of years. There are no emissions from fusion, and the radioactive wastes from fusion are shortlived, only requiring burial and oversight for about 100 years. In addition, there is no risk of a melt-down accident because only a small amount of fuel is present in the system at any time. Finally, there is little risk of nuclear proliferation because special nuclear materials, such as uranium and plutonium, are not required for fusion energy. Fusion systems could power an energy supply chain based on hydrogen and fuel cells, as well as provide electricity directly.

Although still in its early stages of development, fusion research has made some advances. In the early 1970s, fusion research achieved the milestone of producing 1/10 of one watt of fusion power, for 1/100 of a second. Today the energy produced from fusion is 10 billion times greater, and has been demonstrated in the laboratory at powers over 10 million watts in the range of a second.

Internationally, an effort is underway in Europe, Japan, and Russia to develop plans for constructing a large-scale fusion science and engineering test facility. This test facility may someday be capable of steady operation with fusion power in the range of hundreds of megawatts.

Both hydrogen and fusion must make significant progress before they can become viable sources of energy. However, the technological advances experienced over the last decade and the advances yet to come will hopefully transform the energy sources of the distant future.

Recommendation:

★ The NEPD Group recommends that the President direct the Secretary of Energy to develop next-generation technology—including hydrogen and fusion.

• Develop an education campaign that communicates the benefits of alternative forms of energy, including hydrogen and fusion.

• Focus research and development efforts on integrating current programs regarding hydrogen, fuel cells, and distributed energy.

Current Markets for Renewable and Alternative Energy Advances in Technology

Non-hydropower renewable energy accounts for about 4 percent of current U.S. energy production, divided evenly between electricity generation and transportation fuels such as ethanol. Between 1990 and 1999, renewable energy generation grew by 29 percent, and renewable energy is projected to continue to grow (Figure 6-1). Renewable fuel consumption, including ethanol for gasoline blending, is projected to grow at an average rate of 1.1 percent a year through 2020. In 2020, 55 percent of renewables are projected to be used for electricity generation and the rest for dispersed heating, industrial uses, and fuel blending.

The success of renewables is, in part,

the result of over twenty years of research, development, and demonstration conducted by the public and private sectors. This work has dramatically improved these technologies and has reduced their costs by as much as 90 percent. For example:

• The Department of Energy (DOE), the National Renewable Energy Laboratory (NREL), and Alstom Energy Systems jointly created Advanced Direct-Contact Condensers, which improve the efficiency and generating capacity of electric power plants by providing the best surface area for condensing spent steam. This technological advance, tested in geothermal applications in California, can improve the efficiency of electricity production by 5 percent and capacity by 17 percent.

• United Solar Systems in Michigan pioneered the first commercial use of solar photovoltics as a building material. The triple-junction, thin-film technology is now sold as flexible solar panels, solar shingles for building roofs, and a peel-and-stick-on variety for standing seam metal roofs. United Solar is now building a larger manufacturing plant in Michigan that is five times the size of its existing manufacturing facility. DOE collaborates with United Solar on research and development helping overcome hurdles in manufacturing. As a result, United Solar is able to provide unique solarelectric products using a unique roll-to-roll manufacturing process.

• In partnership with DOE, NREL, Battelle Lab, Burlington Electric and others, Future Energy Resources Corporation of Norcross, Georgia, was able to build, test, and operate the world's first biomass gasification system. The McNeil Plant, located in Burlington, Vermont, gasifies rather than combusts wood chips to power a gas boiler. The technology has shown itself to be commercially viable, and is being considered worldwide by industries as a way of upgrading existing inefficient and aging boilers.

Improved renewable and alternative energy technologies are becoming increasingly attractive to a number of energy companies seeking to build new business opportunities for the future (Figure 6-3). Following are a few examples:

Figure 6-1 Increases in U.S. Energy Production: 1990–1999

During the last decade, renewable energy sources contributed substantially to the growth in U.S. energy production, outpacing all fuel sources except for nuclear energy.

Source: U.S. Department of Energy, Energy Information Administration.

Table 6-2 Electricity Generated by Renewable Energy Sources: 1999

	Solar	Wind	Geothermal	Biomass	Hydropower
Current net summer capacity (MW)	350	2,600	2,870	6,170	79,130
Annual generation (millions of kWh)	940	4,460	13,070	36,570	312,000
Expected growth in generation (%)	PV: 19.3 Thermal: 21	5.3	3.3	3.0	-0.1
Cost (cents/kWh)	20	4–6	5–8	6–20	2–6

Renewable energy has become a significant source of electric power in the United States.

Note: Capacity, generation, and growth data do not include off-grid electricity, thermal, or other nonelectricity energy production, municipal solid waste, or methane from landfills.

Sources: U.S. Department of Energy, Energy Information Administration and Office of Power Technologies.

• FPL Group announced in January 2001 the construction of two major wind farms: a 300 MW facility on the Washington–Oregon border, and a 25.5 MW facility in Wisconsin. The company now has more than 1,000 MW of wind generating capacity in operation or under construction in seven states.

• CalEnergy Company has made renewable and alternative energy generation a central focus of its power portfolio. The company operates 1,300 MW of geothermal, natural gas, hydropower, and other power facilities in the U.S. and abroad, with another 750 MW currently under construction.

• General Motors, Ford, DaimlerChrysler, Texaco, BP/Amoco, and Shell are collectively spending between \$500 million and \$1 billion dollars a year on fuel cells, hydrogen storage, and infrastructure development for passenger vehicles. Ongoing bus demonstrations in the United States and Europe are expected to commercialize fuel cell power hydrogen buses in the next five years.

Because alternative and renewable energy resources can be used in so many different ways throughout the economy to produce so many combinations of energy types, their total use is often difficult to measure precisely. As of 1996, California alone had over 10 MW of installed distributed energy, a large increase in generating capacity during a period of otherwise limited growth in generation (Figure 6-3). In 1999, several types of renewable energy were used to produce electricity (Table 6-2).

On the transportation side, there are approximately 450,000 alternative fuel vehicles in the United States. Additionally, there are more than 1.5 million flexible-fuel vehicles that can use gasoline or a high mixture of ethanol and gasoline. These include the Ford Taurus, the DaimlerChrysler Caravan, and the General Motors S10 pickup. Ethanol is the most widely used biofuel, and its production is currently 1.9 billion gallons a year, representing a nearly ten-fold growth from about 200 million gallons a year in 1980.

Recommendation:

★ The NEPD Group recommends that the President direct the Secretary of the Treasury to work with Congress to develop legislation to provide for a temporary income tax credit available for the purchase of new hybrid or fuel-cell vehicles.

Hybrid Electric Vehicles

Hybrid electric vehicles (HEVs) combine the internal combustion engine of a conventional engine with the battery and electric motor of an electric vehicle, resulting in twice the fuel economy of conventional vehicles. This combination offers the extended range and rapid refueling that consumers expect from a conventional vehicle, with a significant portion of the energy and environmental benefits of an electric vehicle. The practical benefits of HEVs include improved fuel economy and lower emissions compared to conventional vehicles. The car's flexibility will mean convenient use for individuals as well as businesses.

Removing Barriers to Renewable and Alternative Energy Growth

Perhaps the greatest barrier to growth of renewable energy is cost. Currently, the cost of renewable energy generation frequently exceeds the costs of conventional electricity generation. In recent years, though, the costs of renewable energy have declined substantially. For example, the cost of wind energy has declined by more than 80 percent over the past twenty years and is increasingly competitive with conventional electricity generation sources. Wind, biomass, and geothermal are all increasingly competitive with conventional electricity generation.

The ability of these technologies to meet specific market needs is another factor in how quickly their market share will grow. These technologies and energy sources provide multiple benefits to the energy producer and the consumer. For example, many of these technologies are modular and can be constructed rapidly, adding an immediate source of new power in areas that otherwise might face a shortfall. Distributed renewable energy resources can enhance the reliability and quality of power.

Cogeneration uses of waste products and heat can increase profits by reducing purchased electricity costs, as well as costs for process steam and heating or cooling. Several sectors, including lumber and paper, steel, and chemical manufacturing, are exploring the increased use of cogeneration. With the technological development of biomass gasification, the lumber and paper industry could become a seller of electricity.

Recommendation:

★ The NEPD Group recommends that the President direct the Administrator of the Environmental Protection Agency to issue guidance to encourage the development of welldesigned combined heat and power (CHP) units that are both highly efficient and have low emissions. The goal of this guidance would be to shorten the time needed to obtain each permit, provide certainty to industry by ensuring consistent implementation across the country, and encourage the use of these cleaner, more efficient technologies. Renewable technologies can help provide insurance against price volatility. In addition, many renewable technologies can help industry achieve compliance with the Clean Air Act and other environmental regulations. In some cases, renewables can be more readily located in urban areas whose air quality does not meet regulatory requirements.

With the growth rate for non-hydropower renewable electricity generation more than doubling the expected growth in overall electricity capacity, these energy sources will play a more significant role in electricity markets in the next two decades. However, the extent to which these domestic resources are successfully tapped will depend in large part on continued technological development.

For renewable and alternative energy to play a greater role in meeting our energy demands, these sources of generation must be able to integrate into our existing distribution system. The tools that form the necessary interface between distributed energy systems and the grid need to be less expensive, faster, more reliable, and more compact.

Promising technologies exist that will improve the transmission, storage, and reliability of renewable energy. An example of recent technological success that will allow for increased access to all forms of energy, including renewable energy, is the high-temperature superconducting underground power transmission cables that the Department of Energy is developing in partnership with industry. These cables will allow a 300 percent increase in capacity without excavation to lay new transmission lines. This summer, Detroit Edison is demonstrating this commercially viable high-temperature superconducting cable system in an application that serves 14,000 customers.

Renewable and alternative energy technologies, such as wind energy and combined heat and power could be significantly expanded, given today's technologies. They could be further expanded with added investment in technology. For example, wind energy could be developed that could be adapted to sites with lower wind speeds than is feasible today. Combined heat and

Figure 6-3 Growth in California's Renewable Energy Capacity

Source: U.S. Department of Energy, Energy Information Administration.

While solar energy technologies have undergone technological and cost improvements, and are well established in high value markets like remote power, satellites, communications, and navigational aids continued research is needed to reduce costs and improve performance.

U.S. DEPARTMENT OF ENERGY

Figure 6-4 Investors Are Betting on Distributed Energy

In the last few years, surging venture capital investments showed strong support for distributed energy technologies.

Note: Data for 2000 are projected investments. Source: Nth Power via the Economist, August 5, 2000. power in buildings offers great potential for increased system efficiencies and lower costs. New developments in microturbine and fuel cell technologies are also highly promising. Performance improvements of other technologies, such as photovoltaic systems, would facilitate much wider use. In addition to technological performance, attention to several key market and regulatory constraints would accelerate the development and use of renewable and alternative energy in the marketplace.

Because many renewable and alternative energy technologies do not fit into traditional regulatory categories, they are often subjected to competing regulatory requirements or to requirements that were never designed to address them. For example, much of the current Clean Air Act does not specifically address the use of new, more efficient renewable energy technologies. Consequently, the Act does not provide significant incentives for the development of such technologies. The lack of interconnection standards or guidelines for electricity supply and loads impedes the use of distributed energy technologies. As a result, developers of small renewable energy projects must negotiate interconnection agreements on a site-by-site basis with local distribution companies that are often opposed to distributed energy projects because of the increased competition. Although a few states have established interconnection standards, there is no national standard to facilitate development of distributed energy (Figure 6-4).

New combined heat and power facilities may face air permitting hurdles when they replace marginally dirty boilers. The Clean Air Act does not recognize the pollution prevention benefits of the increased efficiency of combined heat and power units. At the same time, these combined heat and power investments are taxed at the industry's tax rate, not at the rate they would receive if they were considered part of the utility sector for tax purposes. In addition, modifications to permitting and siting requirements may be necessary to facilitate the incorporation of these technologies into buildings.

The infrastructure needed for increasing the use of renewable and alternative energy varies considerably. In particular, the alternative fuels infrastructure lags far behind the existing infrastructure for conventional fuels. The lack of infrastructure for alternative fuels is a major obstacle to consumer acceptance of alternative fuels and the purchase of alternative fuel vehicles. It is also one of the main reasons why most alternative fuel vehicles actually operate on petroleum fuels, such as gasoline and diesel. In addition, a considerable enlargement of ethanol production and distribution capacity would be required to expand beyond their current base in the Midwest in order to increase use of ethanol-blended fuels.

The use of natural gas or electricity for vehicles requires enhancements to these distribution systems, such as compression stations for natural gas. While many alternative fuels can be shipped by pipeline, they may require separation within the pipeline to avoid mixing different energy products. Geographically dispersed renewable energy plants often face significant transmission barriers, including unfavorable grid schedule policies and increased embedded costs.

Uncertainty regarding the tax treatment of these technologies and energy sources can discourage long-term investment. Though existing tax credits provide an incentive for investing in some types of renewable energy, the limited scope of the credit and its frequent expiration discourages investment.

Summary of Recommendations

Nature's Power: Increasing America's Use of Renewable and Alternative Energy

★ The NEPD Group recommends that the President direct the Secretaries of the Interior and Energy to re-evaluate access limitations to federal lands in order to increase renewable energy production, such as biomass, wind, geothermal, and solar.

★ The NEPD Group supports the increase of \$39.2 million in the FY 2002 budget amendment for the Department of Energy's Energy Supply account that would provide increased support for research and development of renewable energy resources.

★ The NEPD Group recommends that the President direct the Secretary of Energy to conduct a review of current funding and historic performance of renewable energy and alternative energy research and development programs in light of the recommendations of this report. Based on this review, the Secretary of Energy is then directed to propose appropriate funding of those research and development programs that are performance-based and are modeled as public-private partnerships.

★ The NEPD Group recommends that the President direct the Secretary of the Treasury to work with Congress on legislation to expand the section 29 tax credit to make it available for new landfill methane projects. The credit could be tiered, depending on whether a landfill is already required by federal law to collect and flare its methane emissions due to local air pollution concerns.

★ The NEPD Group recommends that the President direct the Secretary of the Interior to determine ways to reduce the delays in geothermal lease processing as part of the permitting review process.

★ The NEPD Group recommends that the President direct the Administrator of the Environmental Protection Agency to develop a new renewable energy partnership program to help companies more easily buy renewable energy, as well as receive recognition for the environmental benefits of their purchase, and help consumers by promoting consumer choice programs that increase their knowledge about the environmental benefits of purchasing renewable energy.

★ The NEPD Group recommends that the President direct the Secretary of the Treasury to work with Congress on legislation to extend and expand tax credits for electricity produced using wind and biomass. The President's budget request extends the present 1.7 cents per kilowatt hour tax credit for electricity produced from wind and biomass; expands eligible biomass sources to include forest-related sources, agricultural sources, and certain urban sources; and allows a credit for electricity produced from biomass co-fired with coal.

★ The NEPD Group recommends that the President direct the Secretary of the Treasury to work with Congress on legislation to provide a new 15 percent tax credit for residential solar energy property, up to a maximum credit of \$2,000.

★ The NEPD Group recommends that the President direct the Secretaries of the Interior and Energy to work with Congress on legislation to use an estimated \$1.2 billion of bid bonuses from the environmentally responsible leasing of ANWR for funding research into alternative and renewable energy resources, including wind, solar, geothermal, and biomass.

★ The NEPD Group recommends that the President direct the Secretary of the Treasury to work with Congress to continue the ethanol excise tax exemption.

★ The NEPD Group recommends that the President direct the Secretary of Energy to develop next-generation technology—including hydrogen and fusion.

• Develop an education campaign that communicates the benefits of alternative forms of energy, including hydrogen and fusion.

• Focus research and development efforts on integrating current programs regarding hydrogen, fuel cells, and distributed energy.

• Support legislation reauthorizing the Hydrogen Energy Act.

★ The NEPD Group recommends that the President direct the Secretary of the Treasury to work with Congress to develop legislation to provide for a temporary income tax credit available for the purchase of new hybrid or fuel-cell vehicles between 2002 and 2007.

★ The NEPD Group recommends that the President direct the Administrator of the Environmental Protection Agency to issue guidance to encourage the development of well-designed combined heat and power (CHP) units that are both highly efficient and have low emissions. The goal of this guidance would be to shorten the time needed to obtain each permit, provide certainty to industry by ensuring consistent implementation across the country, and encourage the use of these cleaner, more efficient technologies.